
System V

APPENDIX B

Setting Up the UNIX™ System (DEC)

Setting up the UNIX™ System (DEC)

GENERAL

This section describes the load, update, and configuration procedures involved in installing a

UNIX! operating system on the following DEC processors:

e Digital Equipment Corp. VAX 11/780, 11/750

¢ Digital Equipment Corp. PDP 11/70

A. Prerequisites

Before attempting to generate a UNIX operating system, the system administrator should

understand that a considerable knowledge of the related documentation is required and assumed. In
particular, the administrator should be very familiar with the following documents:

e UNIX System User’s Guide

© UNIX System User’s Manual

e UNIX System Administrator's Manual
e UNIX System Operator's Guide

e All sections in the UNIX System Administrator's Guide.

Throughout this section, each reference of the form mame(1M), name(7), or name(8) refers to
entries in the UNIX System Administrator's Manual. All other references to entries of the form

name(N), where "N" is a numiber(1 through 6) possibly followed by a letter, refer to entry name in
section N of the UNIX System User’s Manual .

The system administrator must have a basic understanding of the operation of the hardware.
This includes the operation of the console and the tape and disk drives, which are assumed to have
standard UNIX system addresses and interrupt vectors. It is also assumed that the hardware works

and has been completely installed. All appropriate DEC diagnostics should have been run to test
the configuration, and a detailed description of the hardware including device addresses, interrupt

vectors, and bus levels is needed. This information is necessary to generate a UNIX system.

B. Procedure

The UNIX system is distributed on two magnetic tapes, recorded in 9-track format at either 800
bpi or 1600 bpi. Distribution tapes will be marked either “PDP-11” or “VAX”, 800 bpi or 1600
bpi. Make sure you have the correct tape for your machine. UNIX System V is to be installed
using only the initial load procedures described in this document.

Initial Load

The initial load program (on Tape 1) will copy a file system from tape (VAX-11/780: either a
TE16 or a TU78; VAX-11/750: either a TS11 or a TU77; PDP-11: either a TU10 or a TUI6) to

disk (VAX: either a RP06, a RPO7, a RMO5, or a RM80; PDP-11: either an RPO3, an RPO6, or an

RMOS5). In this document, RP0O4/5 drives are considered to be equivalent to RPO6 drives; any

differences will be noted explicitly. Once the root file system has been successfully loaded to disk,
the UNIX system may be booted and the available utility programs used to complete the
installation.

Update :

The update procedures are to be used only on releases that are designated as update releases.
The cpio(1) program is used to perform all updates. The cpio program will not update any file if its
replacement has a modification time that is less than (i-e., earlier than) the modification time of the

1. UNIX is a trademark of Bell Telephone Laboratories, Incorporated.

Page |

original file. Certain administrative files (e.g., etc/passwd) are sent with a modification time of
January 1, 1970 to ensure that they do not replace their counterparts during updates. Any file not
copied will cause cpio to print a message to that effect. These messages should always be

investigated to ensure that any files not copied were of that type. However, note that, depending on
respective modification times, a locally-modified file may get updated, thus destroying the local

modifications.

One of the most common problems that can arise during an installation is running out of disk
space when performing an update. Should this occur, the original contents of the file system should

be restored from a backup copy and the contents of the update tape should be read into a spare file

system using the cpio program. Unwanted material can then be removed and the original file
system can be updated from this new file system using the ~pdm options of cpio.

LOAD PROCEDURES

A. Distribution Tape Format

Tape | contains eight files: a loader, a physical copy of the root file system, the epio program, a
cpio structured copy of the root file system, and four files (epio format) that represent selectable

items. Root refers to the directory “‘/’’, which is the root of all the directory trees. The format of

this tape is as follows:

file 1: Tape boot loader — 512 bytes;
Tape boot loader — 512 bytes;

Initial] load program — several 512-byte records;

file 2: root file system (physical) — 5120-byte records (blocking factor 10);

file 3: cpio program (latest version) — several 512-byte records (to be used only for
updating an earlier UNIX system release);

file 4: the root file system (structured in cpio format) — several 5120-byte records

(to be used only for updating an earlier UNIX system release);

file 5: on-line manual pages (same format as file 4);

file 6: on-line documents (same format as file 4);

file 7: RJE software (same format as file 4);

file 8: graphics software (same format as file 4).

The root (/) file system contains the following directories:

bck: Directory used to mount a backup file system for file restoring.

bin: Public commands; described in Section 1 of the UNIX S ‘ystem User’s

Manual

dev: Special files, all the devices on the system.

etc: Administrative programs and tables.

lib: Public libraries, parts of the assembler, C compiler.

mnt: Directory used to mount a file system.

lost+found: Directory used by fsck(1M) for disconnected files.

stand: Stand-alone programs.

tmp: Directory used for temporary files; should be cleaned at reboot.

usr: Directory used to mount the /usr file system.

Page 2

B. Initial Load of Root

Mount Tape | on drive 0 and position it at the load point.

PDP-11

Boot the tape by reading either record 0 or 1 into memory starting at address 0 and start
execution at address 0. This may be accomplished by using a standard DEC ROM bootstrap
loader, a special ROM, or some manual procedure; sec romboot(8), tapeboot(8), and 7@boot(8).

VAX

See “Installation Boot Procedures” under either 11/780 ops(8) or 11/750 ops(8). These entries
describe initial tape booting and modification of the console floppy disk to simplify UNIX system
administration.

C. Common to PDP-11 and VAX

The tape boot loader will type “UNIX tape boot loader” on the console terminal and read in and
execute the initial load program. The program will then type detailed instructions about the

operation of the program on the console terminal. The program will ask what type of disk drive you
have and which drive you plan to use for the copy. The disk controller used must be at the standard

DEC address indicated by the program; however, other disk controllers on your system may be at

nonstandard addresses. A formatted, ECC flag-free pack must be mounted on the drive you have

indicated. If necessary, use the appropriate DEC diagnostic program to format the pack. For the
VAX use format(1M). Note that the pack will be written on. Next, the program will ask what
type of tape drive you have and which drive contains the tape. Normally, this will be drive 0, but
the program will work with other drives. Note that the tape is currently positioned correctly after
the end-of-file between the initial load program and the root file system. When everything is ready,
the program will copy the file system from the tape to disk and give instructions for booting the

UNIX system. After the copy is complete and you have booted the basic version of the UNIX
operating system, check [using fsck(1M)] the root file system and browse through it.

PDP-11/70 Only

The file /stand/mmtest is a stand-alone memory mapping diagnostic program for the PDP-11/70.
If you are not absolutely sure that DEC FCO (field change order) M8140-R002 has been applied to
your PDP-11/70 CPU, stand/mmtest should be booted and allowed to run at least 20 minutes. To
boot this program, go through the disk boot procedure, but specify:

0=stand/mmtest

The UNIX system comes with optional power-fail recovery. This feature requires that the
power-up and power-down interrupt vectors be 024.

D. Update of Root

It is very important that the system be running in single-user mode during the update phase. To
update an already existing root file system, files three and four on Tape 1 will be used. It is
necessary to first make a copy of the root file system using voleopy(1M) and then update this copy.
The copy should be made on a separate disk pack using the same section number as the root file

system (always section 0). Also, after the update is completed, check if any of the local
administrative files in the directory /etc need modification. Most of these are mentioned in the part
“ADMINISTRATIVE FILES”.

Mount Tape 1 on drive 0 and position it at the load point. It is assumed that disk drive | is
available for making the copy and that the root file system is on Mev/rp0. The following procedure

will first make a copy of the root file system, and then update this copy. Note that /dev/nt4 refers
to tape drive 0 but has the side effect of spacing forward to the next end-of-file (no rewind option).
The —B option of epio specifies that input is in 5120-byte records:

Page 3

volcopy root /dev/rrp0 pkname! /dev/rrp10 pkname2
mount /dev/rp10 /bck
The 2 echoes will move the tape to file 3
echo </dev/mt4

echo </dev/mt4
cp /dev/mt4 /bck/bin/cpio
chmod 755 /bck/bin/cpio

chown bin /bck/bin/cpio
ed /bck
/bck/bin/cpio —idmB </dev/rmt0
ed /
umount /dev/rp10

Pknamel and pkname2 are the volume names of the source and destination disk packs, respectively.

If the new copy is satisfactory, shut down and halt the system, change disk packs, and reboot the
system using the new root.

E. Tape 2 (/usr) Format

Tape 2 contains the /usr file system in cpio format (5120-byte records). The /usr file system

contains commands and files that must be available (mounted) when the system is in multiuser
mode. The tape contains the following directories:

adm: Miscellaneous administrative command and data files including the process
accounting file pacct.

bin: Public commands; an overflow for /bin.

games: Various demonstration and instructional programs.

include: Public C language #include files.

lib: Archive libraries including the text processing macros; also contains data files
for various programs such as spell(1) and cron(1M).

mail: Mail directory.

lost+found: Directory used by fsck(1M) for disconnected files.

news: Place for all the various system news; see news(1).

pub: Handy public information, e.g., table of ASCII characters.

spool: Spool directory for daemons.

src: Source for commands, libraries, the system, etc.

tmp: Directory for temporary files; should be cleaned at reboot.

F. Initial Load of /usr

Mount Tape 2 on drive 0 and position it at the load point. Mount a file system (device) as /usr.
The ultimate size and location of this file system on a device is an administrative decision; initially,
the following procedure will suffice: ey

Page 4

mkfs /dev/rrp! 65000 gap blocks
See mkfs(1M) for appropriate parameters.

Note that for RPO3 disks, this will use part of section 2.
labelit /dev/rrp] usr pkname
mount /dev/rp1 /usr
chmod 775 /usr

ed /usr
cpio —idmB </dev/rmt0

Pkname is the volume name of the pack (e.g., “p0001").

Because /usr must be mounted when the system is in multiuser mode, the file /etc/rc must be
changed to include the command lines to mount and unmount the file systems in single user and

multiuser mode. These lines must be inserted at the appropriate places in /etc/rc as indicated by

comments in the prototype file. Next, the file /etc/checklist should be changed to include the file
system device (e.g., /dev/rrp!); see fsck(1M), labelit(1M), mkfs(1 M), mount(1M), and checklist(4).

G. Update of /usr

It is advisable that the system be running in singleuser mode during the update phase. It is also

wise to first make a copy of your /usr file system for backup purposes. Next, mount Tape 2 on drive

0 and position it at the load point. The /usr file system must also be mounted. The following

procedure will perform the update:

ced /usr
cpio ~idmB </dev/rmt0O

H. Initial Load or Update of Selectable Items

The initial load and update procedures are essentially the same; the only exception being the

creation of the selectable item directory on the initial load.

Mount Tape 1 on drive 0 and position it at the load point. Make sure that the /usr file system is

mounted. The following procedure will read in the source for each of the selectable subsystems. If
a particular subsystem is not desired, simply skip that file on the tape by executing the following

command:

echo </dev/rmt4

The tape can be rewound after any subsystem by specifying /dev/rmt0 instead of /dev/rmt4.

Page 5

echo </dev/rmt4; echo </dev/rmt4

echo </dev/rmt4; echo </dev/rmt4

cd /usr

mkdir man; chown bin man; chgrp bin man; chmod 775 man
cd man

cpio ~idmB </dev/rmt4

cd /usr

mkdir docs; chown bin docs; chgrp bin docs; chmod 775 docs

cd docs

cpio ~idmB </dev/rmt4

ced /usr/src/cmd

mkdir rje; chown bin rje; chgrp bin rje; chmod 775 rje

cd rje

cpio ~idmB </dev/rmt4

ed /usr/src/cmd
mkdir graf; chown bin graf; chgrp bin graf; chmod 775 graf

cd graf

cpio —idmB </dev/rmt0

After installing the source for the rje and graphics subsystems, the software must be built and
installed. (Execute the commands for the subsystems that you have elected to take.)

To build and install rje, change your working directory to /usr/src and execute one of the

following :mkemd lines:

ARGS="rje1" ./:mkemd rje # makes a single IBM system
ARGS="rje2" ./:mkemd rje # makes rjel, and rje2
ARGS="rje3" /:mkemd rje # makes rjel, rje2, and rje3
ARGS="rje4" ./:mkemd rje # makes rjel, rje2, rje3, and rje4

See rje(8) and the “UNIX System Remote Job Entry ” section for additional information.

To build and install the graphics package:

ed /usr/sre
./:mkemd graf

CONFIGURATION PLANNING

A. UNIX System Configuration

The basic UNIX operating system supplied supports only the console, a disk controller (disk

drive 0), and a tape controller (tape drive 0). Each system administrator must describe the actual

configuration of their own system.

All of the UNIX operating system source code and object libraries are in /usr/src/uts. All of the

configuration information is kept in the directory /usr/srcfutsh/cf, the “*” represents either pdp// or
vax. There are only two files that must be changed to reflect your system configuration - /ow.s

. (univec.c on the VAX) and conf.c. The program config(1M) should be used to make these changes.

Config requires a “system description file” and produces the two needed files. Table 4.A lists the
values and sizes of the basic parameters for the different CPUs. For more details of syntax and
structure, see config(1M) and the associated master(4).

The first part of the system description file lists all of the hardware devices on the system. Next,
various system information is listed. A brief explanation of this information follows:

Page 6

TABLE 4.A.

PDP-11/70 VAX-11/750,/780

nswap 3000

buffers 25-60
sabufs 10-15

hashbuf 32-128

physbuf 3-5
inodes 100-250 100-300

iblocks 80-200 os
files 100-250 100-300
mounts 8-16 8-20

coremap 50-100 -
swapmap 50-100 50-100
calls 30-60 30-60

procs 50-200 50-200

texts 25-50 25-50

clists 100-300 100-250
maxproc 25 25

+ Plus 512 bytes/buffer outside system space.

+ Plus 1024 bytes/buffer allocated at start up.

root—— Specifies the device where the root file system is to be found. The device must be a
block device with read/write capability because this device will be mounted read/write as
“/". Thus, a tape can not be mounted as the roor but can be mounted as some read-only file
system. Normally, root is disk drive 0, section 0.

pipe—— Specifies where pipes are to be allocated (must be a mounted file system — the root
file system is normally used).

dump—— Specifies the device to be used to dump memory after a system crash. Currently,
only the TU10, TU16/TE16, TU78, and TS11 tape drives are supported for this purpose.

swap—— Specifies the device and blocks that will be used for swapping. Swplo is the first
block number used and nswap indicates how many blocks, starting at swplo, to use. Care
must be taken that the swap area specified does not overlap any file system. For example, if
section 0 is 8000 blocks long, the root file system could occupy the first 6000 blocks, and
swap the remaining 2000 by specifying:

root rp06 0

swap rp06 0 6000 2000

buffers——Specifies how many “system buffers” to allocate. Real-time response improves as
more buffers are allocated. UNIX system buffers form a “data cache”. Improvement in the
hit rate of this cache tends to fall as the number of buffers is increased.

sabufs-—PDP-11 only: specifies how many “system addressable” buffers to allocate. One
buffer is needed for every mounted file system. Certain I/O drivers need such buffers.

hashbuf——Specifies how many hash buckets to allocate. These are used to search for a
buffer given a device number and block number. This number must be a power of two. The
default value is 64.

physbuf——Specifies how many physical I/O buffer headers to allocate. One is needed for
each physical read or write active. The default value is 4.

Page 7

inodes——Specifies how many “inode table” entries to allocate. Each entry represents a
unique open inode. When the table overflows, the warning message “Inode table overflow”
will be printed on the console. The table size should be increased if this happens regularly.
The number of entries used depends on the number of active processes, texts, and mounts, Ea

iblocks—PDP-11 only: specifies how many “inode block address cache” entries to allocate.

An entry is needed for each regular, directory, or fifo file that is open. Since special files do

not need an entry, data space can be conserved by specifying a much smaller number of

iblocks than inodes. The default value is four less than the number of inodes.

e files——Specifies how many “open-file table” entries to allocate. Each entry represents an

open file. When the table overflows, the warning message “no file” will be printed on the

console. The table size should be increased if this happens regularly.

mounts——Specifies how many “mount table” entries to allocate. Each entry represents a

mounted file system. The root (/) will always be the first entry. When full, the mount(2)
system call will return the error EBUSY.

coremap——PDP-11 only: specifies how many entries to allocate to the “list of free memory”.
Each entry represents a contiguous group of 64-byte blocks of free memory. When the list

overflows, due to excessive fragmentation, the system will print a warning message on the

console. This condition results in the loss of memory being freed. The system should be
remade with a larger table size and rebooted. The number of entries used depends on the

number of processes active, their sizes, and the amount of memory available.

swapmap——Specifies how many entries to allocate to the “‘list of free swap blocks”. Exactly
like the coremap, except it represents free blocks in the swap area, in 512-byte units.

calls——Specifies how many “‘call-out table” entries to allocate. Each entry represents a
function to be invoked at a later time by the clock handler. The time unit is 1/60 of a
second. The call-out table is used by the terminal handlers to provide terminal delays and by
various other I/O handlers. When the table overflows, the system will crash and print the
panic message “Timeout table overflow” on the console. This value must be greater than
two.

procs——Specifies how many “process table” entries to allocate. Each entry represents an

active process. The scheduler is always the first entry and init(1M) is always the second

entry. The number of entries depends on the number of terminal lines available and the

number of processes spawned by each user. The average number of processes per user is in
the range of 2 through 5. When full, the fork(2) system call will return the error EAGAIN.

texts~—Specifies how many “text table” entries to allocate. Each entry represents an active

read-only text segment. Such programs are created by using the —i or —n option of the

loader Id(1). The —n option is implicit on the VAX. When the table overflows, the warning
message “out of text” is printed on the console.

clists~—Specifies how many “character list buffers” to allocate. On the PDP-11, each buffer

contains up to 24 bytes; on the VAX, each buffer contains up to 64 bytes. The buffers are

dynamically linked together to form input and output queues for the terminal lines and

various other slow-speed devices. The average number of buffers needed per terminal line is

in the range of 5 through 10. When full, input characters from terminals will be lost and not
echoed.

maxproc~—Specifies how many concurrent processes a non-superuser is allowed to run.

power—~—Specifies whether to attempt restart after a power failure. A value of 0 (default)
indicates no restart; a value of 1 attempts power-fail restart. On restart, device drivers are

called and process | (i.e., init) is sent a hangup signal; see init(1M).

Page 8

¢ sema——Specifies whether to include semaphore code. A value of 0 (default) indicates no
semaphores; a value of 1 includes semaphores.

e shmem——Specifies whether to include shared memory code. A value of 0 (default) indicates

no shared memory; a value of 1 includes shared memory.

© mesg——Specifies whether to include message code. A value of 0 (default) indicates no
messages; a value of 1 includes messages.

°
shmmax——Specifies the maximum size of a shared memory segment.

shmmin——Specifies the minimum size of a shared memory segment.

© shmmni——Specifies the maximum number of shared memory segments in the system.

e shmseg——Specifies the maximum number of shared memory segments a user may have
attached.

shmall——Specifies the maximum amount of shared memory that may be allocated system

wide. The default value is 512 clicks, 250k bytes.

e shmbrk——Specifies the number of clicks between the end of the data segment, and the

beginning of the first shared memory segment if the default starting address is used allowing
the user to continue to use sbrk(2) or brk(2). The default value is 16 clicks, 8k bytes.

msgmax——Specifies the maximum message size.

e msgmnb——Specifies the maximum number of bytes on any one queue.

msgitql——Specifies the number of system message headers, i.e., maximum number of

outstanding messages.

msgssz——Specifies the message segment size. Messages consist of a set of contiguous

Message segments large enough to fit the text. The segments are used to help eliminate

fragmentation and speed message buffer allocation. A message may span several segments.

msgseg——Specifies the number of message segments in the system.

e msgmap——Specifies the message segment map size.

msgmni——Specifies the maximum number of message queues system wide. The default is
10.

® semmap——Specifies the number of entries in the semaphore map. The map is used by the

system to allocate and free semaphore sets. This parameter should be changed to reflect

changes in semmns.

© semmni——Specifies the number of semaphore identifiers, i.c., number of semaphore sets.

© semmns——Specifies the number of semaphores in the system.

© semmnu——Specifies the number of undo structures in the system.

® semume——Specifies the maximum number of undo entries per structure.

@ semms!——Specifies the maximum number of semaphores per semaphore identifier.

® semopm——Specifies the maximum number of semaphore operations per semop(2) call.

© maus——PDP-11 only: specifies whether to include maus (shared memory) code. A value of
0 (default) indicates no shared memory; a value of 1 includes the shared memory code.

B. UNIX System Generation

Before generating the first UNIX system, the system administrator should modify the file called
Makefile in the /usr/srclutsh/cf directory. This file contains five symbols that are used for system
identification; it is used to initialize the internal utsname structure [see uname(1) and uname(2)].

Page 9

The five symbols (which are eight characters maximum) are as follows:

SYS System name (e.g., pwha);

NODE The name by which the system is known on the uucp(1C) network (e.g.,
pwha);

REL The operating system release (e.g., sysV);

VER The current version of the system; this is usually four characters indicating
when the system was made (e.g., 0620 for June 20);

MACH The machine hardware name (e.g., vax-780).

Generally, only the first two symbols need local modification; the REL symbol is a constant for
the duration of this release, while the VER symbol will be defined when you make(1) the system.
The name of the executable file produced by the generation procedure will be the concatenation of
the SYS and VER symbols (e.g., pwba0620).

To generate a new UNIX operating system, follow the procedure given:

ed /usr/src/uts/*/cf

ed dfile

a

{information as described above]

w

q
config dfile
make VER™ver

The PDP-11 system has a relatively small address space. If the table sizes or the number of
device types are too large, the program sysfix will print various error messages and the above
procedure will only create an a.out file. In particular, the maximum available data space is 49,152

bytes. The actual data space requested can be found by using size(1) on a.out and adding the data
and bss segment sizes. One then reduces the specified values for the various system entries until it
all fits. The amount of space in the bss segment used for each entry is indicated in the part “UNIX
System Configuration”.

On the VAX, the combined data space should not exceed 200,000 bytes.

The PDP-11 system is distributed with a special overlay loader that allows larger systems (text
size greater than 64K) to be configured. This system will be made up of one main segment and

seven overlay text segments that use supervisor registers to switch the overlay text segments. The

main segment may be as large as 56K, and the overlay text segments may not be greater than 8K
each. To invoke this new text scheme, edit /usr/src/uts/*/Makefile. To change the TYPE symbol

from id to ov or when generating a new system, use the following procedure:

ed /usr/src/uts/*/cf
make VER™ver TYPE=ov

When you are satisfied with the new system, test it by the following procedure:

cp /usr/src/uts/*/sysver / # sysver as above
cd /
umount /dev/rp]
rm /unix

In /sysver /unix
sync

Halt the processor and reboot the system. Note that this procedure results in two names for the

operating system object the generic /unix and the actual name, say /pwba0620. An old system may

Page 10

be booted by referring to the actual name, but remember that many programs [such as ps(1)] use
the generic name /unix to obtain the name-list of the system.

If the new system does not work, verify that the correct device addresses and interrupt vectors

have been specified. On the PDP-11, if the wrong interrupt vector and the correct device address
have been specified for a device, the operating system will print the error message “stray interrupt at
XXX” when the device is accessed, where XXX is the correct interrupt vector. On the VAX, the

message is “stray UBA interrupt at XXX”. On the PDP-11, if the wrong device address is

specified, the system will crash with a panic trap of type 0 (indicating a time-out) when the device is
accessed. On the VAX, the system will not crash directly but will print a “UBA” warning message
indicating the failing address.

For the VAX, a stand-alone test may be executed to compare the configuration in Ainix with the

actual hardware. After the stand-alone shell prompts “$$”, type /stand/vcf. The vef(1M) command
reports on the MASSBUS adapter configuration and attempts to determine the UNIBUS system

device configuration. Any errors should be corrected before continuing.

C. Special Files

A special file must be made for every device on your system. Normally, all special files are

located in the directory dev. Initially, this directory will contain:

console console terminal

error see err(7)
mem, kmem, null see mem(7)
tty see tty(7)
rp{0-7], rrp[0-7] disk drive 0, sections 0-7
rl[0-1], rrif0-1] disk drives 0 and 1
rk[0-1], rrk[0-1] disk drives 0 and 1
mt0, rmt0 tape drive 0

mt4, rmt4 tape drive 0 (no rewind).

These special files are of two types - block and character. This is indicated by the character 6 or
c in the listing produced by Is(1) with the —1 option.

In addition, each special file has a major device number and a minor device number. The major

device number refers to the device type and is used as an index into either the bdevsw or cdevsw

table in the configuration file confic The minor device number refers to a particular unit of the
device type and is used only by the driver for that type. The config program with the —t option will
list major device numbers.

The program mknod(1M) creates special files. For example, the following would create part of
the initially-supplied ev directory (on the PDP-11):

cd /dev

mknod console c 0 0

mknod error c 20 0

mknod mem c 2 0; mknod kmem c 2 1; mknod null c 2 2

mknod tty ¢ 13 0

mknod rp0 b 0 0; mknod rrp0 c 7 0
mknod mt0 b 1 0; mknod rmt0 c 6 0

mknod mt4 b 1 4; mknod rmt4 c 6 4

After the special files have been made, their access modes should be changed to appropriate
values by chmod(1). For example:

Page 11

ed /dev

chmod 622 console

chmod 444 error

chmod 440 mem kmem

chmod 666 null

chmod 666 tty
chmod 400 rp0 rrp0
chmod 666 mt0 rmtO

chmod 666 mt4 rmt4

Note that file names have no meaning to the operating system itself; only the major and minor
device numbers are important. However, many programs expect that a particular file is a certain

device. Thus, by convention, special files are named as follows:

block device conf.c /dev
RPO3 disk rp rp*
RP04/5/6 disk hp rp*
RS03/4 fixed head disk hs rs*
RKO5 disk rk rk*
RLO1/2 disk rl rie
RMO0S5 disk hm rp*
RM80 disk gd rp*
RPO? disk gd Tp*
general disk gd rp*

TU10 tape tm mt*
TE/TU16 tape ht mt*
TS11 tape ts mt*
TU78 tape ts mt*
general tape gt mt*

Page 12

character device conf.c /dev
DL11 async. line kl tty*, console

DH11 async. line mux dh ttys
DMC11 sync. unit dmc dme*
DZ11 async. line mux dz tty*
DN11 auto call unit dn dn
DU11 sync. line du du*
KMC11-B micro kmc kmc*
DM11-BA modem control dmk dmk*+

DZ11/KMC11-B assist dzb tty

LP11 line printer Ip Ip*
RPO3 disk rp rrp?

RP04/5/6 disk hp ITp*
-RMOS5 disk hm rrp*

RM80 disk gt rrp*

RPO7 disk gt ITp*
general disk gd rrp*

RS03/4 fixed head disk hs rrs*
TU1O tape tm rmt*

TE/TUI16 tape ht rmt*
TS11 tape ts rmt*
TU78 tape gt rmt*
general tape gt rmt*
error err error
memory mm mem, kmem, null

terminal sy tty

For those devices with a Mev name ending in “*”, this character is replaced by a string of digits
representing the minor device number. For example:

mknod /dev/mt1 b 1 1
mknod /dev/rp24 b 0 024 # leading zero means octal
mknod /dev/tty03 ¢ 1 3

Note that for disks, an octal number scheme is maintained because each drive is logically
partitioned into eight sections. Thus, Mev/rp24 refers to section 4 of physical drive 2. There is also
a special file, dev/swap, that is used by the program ps(1). This file must reflect what block device
is used for swapping and must be readable. For example:

rm /dev/swap
mknod /dev/swap b 0 0
chmod 440 /dev/swap

chown sys /dev/swap; chgrp sys /dev/swap

The minor device numbers for tapes are also encoded; the minor device number consists of the
four bits shown in Fig. 4.1.

DENSITY 0=REWIND DRIVE-SELECT DRIVE-SELECT

SELECT 1=NO REWIND BIT 1 BIT 0

Minor Device Number, Tape

FIG. 4.1 -

For the TU10 and TE16, the density select bit is 0 for 800 bpi and | for 1600 bpi. For the

TU78, the density select bit is 0 for 1600 bpi and 1 for 6250 bpi. For the TS11, the density select

bit is ignored; the density is always 1600 bpi. Therefore, the special file for tape drive 1, for

Page 13

operation at 1600-bpi, with no rewind on close would have a minor device number of 13 (binary
1101). The 2-bit drive number field permits a maximum of four drives per system.

The minor numbers of the automatic calling unit (ACU) interface, DN11, are encoded in eight
bits as shown in Fig. 4.2.

SHARED-ACU-SELECT SYSTEM-UNIT-SELECT LINE-UNIT-SELECT

FOUR BITS DN11-AA DN11-DA

TWO BITS TWO BITS

Minor Device Number, DN11

FIG. 4.2 -

The shared-ACU-select field in normally zero, which indicates the standard 801 ACU hardware
(one ACU, one phone line). For the new shared ACU hardware (one ACU, several phone lines),

the shared-ACU-select field indicates which line is to be used.

D. File Systems

Each physical pack is partitioned into eight logical sections. This partitioning is defined in the
operating system by a table with eight entries. Each table entry is two words long. The first
specifies how many blocks are in the section; the second specifies the starting cylinder; see hp(7)
(RP04/5/6), hm(7) (RMOS5), rp07(7) (RPO7), rm80(7) (RM80), and rp(7) (RPO3) for default
cylinder and block assignments. These values are described to the system in the header file
/usrfincludelsysho.h.

A file system starts at block 0 of a section of the disk and may be as large as the size of that
section; if it is smaller than the size of a section, the remainder of that section is unused. Note that
the sections themselves may overlap physical areas of the pack, but the file systems must never
overlap.

The program mkfs(1M) (for 1K byte/block file systems) or omkfs (for 512 byte/block file
systems) is used to initialize a section of the disk to be a file system. The length of each section of
the disk is specified in 512 byte sectors. When mkfs is used, it produces half the number of 1K byte
file system blocks. The 1K byte blocks provide better throughput for the particular file system. A
512 byte/block file system can be made using omkfs in place of mkfs. The number of physical disk
sectors (512 bytes each) used to make the entire file system would be the same for either command.
In future releases the functions of mkfs and omkfs will be merged into one command.

Next, the program labelit(1M) is used to label the file system with its name and the name of the
pack. Finally, the file system may be checked for consistency by using fsck(1M). The file system
may then be mounted using mount(1M).

E. DZ11 Software with KMC11-B Assist

KMC11-B microprocessors may be used to control DZ11 asynchronous multiplexers, thus off-
loading terminal-oriented functions from the CPU. The KMC11-B does DMA input and output of
data, character translations, tab expansions, etc. Each KMC11 can control up to four DZ11
multiplexers for a total of 32 asynchronous lines. Each system can support up to four KMC1]
microprocessors; however, only 64 DZ11 lines can be controlled by KMC11 microprocessors.

_ Installation

1. Generate a system by including each DZ11 to be controlled by a KMCI11 in the system
description file. For example:

dzb xX Y: Z

where X is the vector address, Y is the UNIBUS address, and Z is the bus request level. Also
include the KMC11 microprocessors in the configuration file:

Page 14

cotch aE, eae

2. Update the files fetc/bre and /etcfpowerfail to execute dzbload before entering one of the

numbered init states and after a power failure, respectively. Each KMC used to control a
DZ11 must be loaded with microcode. For each KMC1] used to control a DZ11, include

/etc/dzbload /dev/kmc?

where ? is the minor device number of that KMC11.

3. Special files must be created for each KMC and DZ11 line:

/etc/mknod /dev/kmc? CX. 2

/etc/mknod /dev/tty2? c Y Z

where X is the major device number of the KMC11 and ? is the minor device number of the

KMC11 controlling the DZ11 multiplexers, i.¢., the KMC11 loaded with microcode in Step 2.
Y is the major device number of the dzb device as is supplied by config(1M). Z is the minor
device number for a particular line on a DZ11. This number is composed of three fields. The

low-order three bits are the line number relative to a DZ11. The next three bits contain the

unit number of the DZ11 controlling these lines. Note that this number is the absolute DZ11
number, not the number relative to the KMC. The high-order two bits are the minor device
number of the KMC controlling this DZ11. For example:

mknod /dev/tty??:c Y 0241

specifies the second line (0 through 7) on the fifth DZ11 to be controlled by the KMC11 with
minor device number 2. The DZ11 number is specified by the order of appearance in the
configuration file. The first four DZ11 multiplexers must be associated with one KMC11 and

the next four must be associated with another KMC11. The order in which the KMC11
microprocessors are specified is not significant.

F. Virtual Protocol Machine (VPM) Devices

KMC11-B microprocessors may be used to control DMC11-DA, -FA, or -MD single-line
synchronous communications interfaces or DMS11-DA 8-line synchronous communications
multiplexers (one per KMC). The combination of a KMC11 and a DMS11-DA is known as a
KMSI1. The KMC11 executes the link-level communications protocol and performs DMA data
transfers between main memory and the communications device. A link-level protocol description in

a high-level language is compiled on the host computer [see vpme(1M)] and then down-loaded into
the KMC11 by the vpmstart(1M) command.

The common synchronous interface (CSI) contains a set of utility routines for communicating
with the VPM interpreter in the KMC11. The VPM protocol driver provides a transparent user

interface to the VPM interpreter. The CSI routines are used not only by the VPM protocol driver
but also by several other protocol drivers.

Installation

1. Generate a system. The system description file must contain a line of the form:

vpm 0 0 0 n

where m is the number of VPM protocol-driver minor devices desired, and a line of the form:

csi 0 0 0 m

where m is the number of CSI minor devices desired. One CSI minor device is required for
each VPM protocol-driver minor device. If other drivers that use CSI are configured,
additional CSI minor devices must be configured to support these drivers. If the VPM trace
capability [see vpm(7)] is to be used, the system description file must also contain a line of the
form:

Page 15

trace 0 0 ; 0 k

where k is the number of trace minor devices desired (normally one). Vpmbsz, a configurable

parameter which gives the size of the buffer pool available to vpm, may be adjusted to be
different from the default value found in /etchnaster. Refer to master(4) for more
information.

2. Compile the protocol script using vpme(1M):

vpme [—m] [—i hdlc[/kms]] —o script.o script.r

where script.r is the source file for the protocol description. The —m option is used only if the

protocol source requires expansion with the m4(1) preprocessor; otherwise, the C preprocessor

is used. The —i hdle option is used to compile a script that uses the bit-oriented (HDLC)
version of the VPM interpreter; otherwise, the character-oriented (BISYNC) version of the

_interpreter will be used. If the script is to be loaded into a KMS11 8-line multiplexer rather
than into a KMC11 controlling a single-line interface, the —i hdlc/kms option is needed.

Only bit-oriented protocols are currently supported by VPM on the KMS11.

3. Install the compiled protocol description in a convenient directory such as /lib and modify the

letcirc file to load the compiled protocol description into the selected KMC11s each time the

system is rebooted (first transition to multiuser) using vpmstart(1M). If power-fail recovery is
desired, the /etc/powerfail file should also be modified to reload the compiled protocol

description into the selected KMC after a power fail occurs. The —r option to vpmstart is

required when reloading the KMC after a power fail.

4. Special files must be created for each VPM protocol-driver minor device, each trace minor

device, and each KMC11:

/etc/mknod /dev/kmc? c X ?

/etc/mknod /dev/vypm? c Y ?
/etc/mknod /dev/trace c Z O

where X, Y, and Z are the major device numbers of the KMC11 driver, VPM protocol driver,
and trace driver, respectively. (It is not necessary to make special files for the CSI minor

devices since these are never referenced explicitly).

5. Modify the /etc/orc file so that it executes a vpmset(1M) command for each VPM protocol-

driver minor device. The arguments to the ypmset command specify the protocol-driver minor
device, the KMC11, and, if the device is a KMS1], the particular line on the KMS11:

/etc/vpmset /dev/vpm? /dev/kmc? [n]

KMCI11 lines are numbered starting with zero. The vpmset commands should be executed on

the first transition to multiuser. An attempt to open a VPM protocol-driver minor device for

reading and/or writing will fail if the corresponding vpmset command has not yet been

executed.

Hardware Installation and Switch Settings

The KMC11-B microprocessor and DMC11-DA, -FA, or -MD line unit must be installed in

adjacent slots of a PDP-11 or VAX backplane. Care should be taken not to exceed the de power
capacity of the cabinet in which the items are installed. The microprocessor and line unit are

interconnected by a 1-foot ribbon cable. The DMC11-DA or -FA line unit is connected to a

* suitable synchronous modem by a DEC-supplied modem cable. If the HDLC interpreter is used,
the modem must be optioned for full-duplex (4-wire) operation; at speeds above 1200 bits per

second, this will normally require a private line. The DMC11-DA has an RS-232 interface that is

suitable for connection to data sets such as the 208 and 209. The DMC11-FA has a CCITT V.35

interface. The DMC11-MD has an integral 56 kB modem; this unit must be connected by a pair of
coaxial cables to another DMC11-MD. The device address and interrupt vector address switches on
the KMC11 should be set for the selected addresses. The KMC11 should also be wired for the

Page 16

selected bus priority (normally 5). All switches and jumpers on the DMC11 line unit should be in

the normal configuration prescribed by the relevant DEC maintenance manual, but with one
exception - the NO CRC switch (switch $2 in switch pack number 1) should be in the ON position.
The purpose of this switch setting is to inhibit hardware CRC generation. Hardware CRC
generation is not used with the VPM software for this device.

The procedures for installing a KMS11 are similar except that:

1. There are no switches to set on the DMS11-DA 8-line multiplexer.

2. Modem cables are not supplied with the DMS11-DA. Instead, there is an 8-line distribution

panel with an RS-232 connector for each line on the DMS11-DA. Each in-use line must be

connected by a suitable cable to a synchronous modem. The modem must be optioned for
full-duplex (4-wire) operation. The modem should also be optioned to hold the transmitter
carrier continuously on because the request-to-send lead to the modem is not controlled by the

VPM software for the KMS11. The DM11-BA modem control multiplexer normally included

as part of the KMS11 hardware package is not currently used by the VPM software for the

KMS11. Limited access to the DM11-BA modem control unit is provided by a separate
driver [see dmk(7)]. If the modem cannot be optioned for continuous carrier, the dmk driver
can be used to turn on the request-to-send lead to the modem. For dial-up lines (e.g., a 212

data set operating in synchronous mode), it may be necessary to use the dmk driver to turn on
the data-terminal ready lead to the modem.

The KMCI1 contains a hardware timer which is used by both the VPM and DZ11/KMC11
software. For proper operation with this software, the value of the hardware timer should be 75
microseconds. Newer versions of the KMC11 microprocessor (etch revisions E and later) contain a
switch pack at location E82 which is used to select the value of the program timer. E82-8 ON
provides a time-out value of 115 milliseconds; E82-8 OFF yields the correct value of 75
microseconds. (E82 1 through 7 are not used). On earlier versions of the KMC11, the time-out

value is selected by installing the proper value of capacitor C40. For proper operation with VPM
and DZ11/KMC11 software, the value of this capacitor should be 4700 pF.

Parallel Communication Link (PCL) Devices

A PCL provides the interface for up to two Digital Equipment Corporation PCL11—B network
buses. Each bus can be used to interconnect up to 16 CPU's, providing relatively fast
communication without individual point-to-point connections.

The interface permits simultaneous bi-directional communication between any machines on a

single bus. Additionally, each such path is further subdivided into 8 independent channels. A single

control interface is provided to reduce the line monitoring overhead for a daemon process.

Installation

1. Generate a system. For each PCL11—B device, the system description file must contain a line
of the form:

cL le, aaa Seem eRe 3

where X is the transmitter interrupt vector, Y is the UNIBUS address of the transmitter

command register, and Z is the number of CPU’s attached to that PCL11—B network bus.

In addition, the PCL control interface must be configured into the system. This is done by
adding the following line to the system description file:

peletel es Ors 02 Ora

2. Special files must be made for each PCL minor device. Each PCL minor device specifies all

information needed to connect to one of the other CPU’s attached to the network bus; the

minor device number is constructed as follows:

Page 17

the low order 3 bits _—_ specify a channel number.

the next 4 bits specify one of 16 machines. (This
number must be one less than
the PCL11-—B_ receiver’s TDM

bus address for that machine.)
The next bit specifies one of the 2 PCL11—B’s

The procedure for installing the PCL special files is as follows:

a. mkdir /dev/pcl

b. cd /dev/pcl

c. For each remote CPU attached to the PCL network bus, the following special files are
made:

/etc/mknod <machinename>0 c 33 X

/etc/mknod <machinename>1 c 33 X

/etc/mknod <machinename>2 c 33 X
/etc/mknod <machinename>3 c 33 X

/etc/mknod <machinename>4 c 33 X

/etc/mknod <machinename>5 c 33 X

/etc/mknod <machinename>6é c 33 X
/etc/mknod <machinename>7 c 33 X

Where <machine name> is the name by which the remote machine is known on the

network and X is the minor device as calculated above; the channel number for this

calculation is the digit following <machine name>.

d. Make the special file for the PCL control interface by executing:

/etc/mknod ctrl c 34 0

e. Finally, give the special files the proper owner, group, and modes.

chown daemon

cherp daemon
chmod 660 *

Hardware Installation and Switch Settings

The installation of the PC11—B hardware is documented in Digit al Equipment Corporation

publication YC-A20TC-00, "PCL11—B Parallel Communication Link Differential TDM Bus".

Because of the design of the UNIX PCL device driver, the transmitter’s and receiver’s TDM bus
addresses must have the same value. The TDM bus addresses are also restricted to the range from
1 to 16.

ADMINISTRATIVE FILES

A. /etc/motd

This file contains the message-of-the-day. It is printed by /etc/profile after every successful

login; therefore, it should be kept short and to the point.

B. /etc/bre

This file is executed prior to entering any of the numbered init states for the first time after a
reboot. The file is generally used to clear the file /etc/mnttab and load KMC11s with their

respective scripts. It is important to remember this file is executed once per reboot and is controlled

by fetchnittab.

C. /ete/powerfail

This shell script is executed according to its line in /etcfinittab. It is used primarily to reload

Page 18

KMCI11 scripts after a power failure has been detected.

D. /etc/re

On the transition between init states, /etcAnit executes the shell script /etc/rc (which must have

executable modes). The execution of this file is controlled by a line in /etchnittab. For /etcirc to
properly handle the mounting and unmounting of file systems, the opening of tty lines, etc., it may

need certain information that is present in /etc/utmp, namely, the new (current) state, the number of

times this state has previously been entered, and the previous state. The following shell script

fragment assigns this data to shell variables and checks for entering init state ‘2’ for the first time.

As an example:

set ‘who -r‘
cur_mode=$7
no_times™$8
pre_mode=$9
if [${cur_mode} = 2) -a ${no_times} = 0)]
then

commands to be executed when entering multiuser mode
fi

Note that these values are carried over between reboots, that is to say, when the system is

rebooted into a single user initial state, these values, stored in /efc/utmp will reflect the state the
system was in when it last went down.

Note that the files /etc/rc, /etclbrc, /etclhinittab, letc/powerfail, and /etc/shutdown must be edited
to suit local conditions; see bre(1M).

E. /etc/inittab

This file is used by /etc/init to determine which processes to create or terminate in each init state.
By convention, state ‘s’ is single user and state ‘2’ is multiuser.

The following line may be used to indicate the default init state, that is, the state the system is

to come up in (most likely single user):

is:s:initdefault:

The following lines arrange for appropriate execution of /etc/bre /etc/rc, and /etclpowerfail:

be::bootwait:/etc/bre 1> /dev/console 2> &1
rc::wait:/etc/re 1> /dev/console 2> &1
pf::powerfail:/etc/powerfail 1> /dev/console 2> &1

For line /devAty00 for use by 1200 baud asynchronous terminals, add the following:

00:2:respawn:/etc/getty -t60 tty00 1200

The arguments to getty are the number of seconds to allow before hanging up the line, the

device name, optional speed settings which refers to an entry in /etc/gettydefs, optional type of
terminal referenced in getty(1M), and optional line discipline.

To add or delete getty-login processes while the system is in multiuser mode, make the

appropriate changes to /etc/inittab then issue the command /etc/init q. This forces /etcfnit to reread

fetcAnittab without having to change init states.

Again, this file must be edited for local conditions; see getty(8), stgetty(8), init(8), gettydefs(4),
and inittab(5).

F. /etc/passwd

This file is used to describe each user to the system. A new line must be added for each new

user. Each line has seven fields separated by colons:

Page 19

Login name: normally 1 through 6 characters, first character alphabetic, the remainder
alphanumeric, no uppercase characters.

Encrypted password: initially null, filled in by passwd(1). The encrypted password contains
13 bytes while the actual password is limited to a maximum of 8 bytes. The encrypted
password may be followed by a comma and up to four more bytes of password “age”
information.

User ID: a number between 0 and 65,535; 0 indicates the superuser. User IDs 0 through 99

are reserved.

Group ID: the default is group 1 (one). Group IDs 0 through 99 are reserved.

Accounting information: this field is used by various accounting programs. It usually contains
the user name, department number, and account number.

' Login directory: full pathname (keep them reasonably short).

Program name: if null, /bin/sh is invoked after a successful login. If present, the named

program is invoked in place of /bin/sh.

For example:

ghh::138:1:6824-G.H.Hurtz(4357):/usr/ghh:
erk::244:1:6510-S.P.LeName(4466):/usr/grk:/bin/rsh

See also passwd(4), login(1), and passwd(1).

G. /ete/group

This file is used to describe each group to the system. The system administrator must add a new
line for each new group. Each line has four fields separated by colons:

ts Group name: normally 1 through 6 characters, first character alphabetic, rest alphanumeric,

no uppercase characters.

Encrypted password: contains 13 bytes while the actual password is limited to a maximum of

8 bytes.

Group ID; a number between 0 and 65,535. Group IDs 0 through 99 are reserved.

Login names: list of all /ogin names in the group, separated by commas; list of all /ogin
names that may use newgrp(1) to become a member of the group.

Group passwords are strongly discouraged. See also group(4).

H. /etc/profile

When the shell is executed and is the leader of a process group, as is the case when it is invoked

by /Jogin, it will read and execute the commands in /etc/profile before executing commands in the

user’s .profile file. This allows the system administrator to set up a standard environment for all

users (e.g., executing umask, setting shell variables, etc.) and take care of other housekeeping details

(such as news —n). Note that in /etc/profile the shell variable $0 indicates the invocation - normal

shell (—sh), restricted shell (—rsh), or su command (—su).

I. /etc/checklist

This file contains a list of default devices to be checked for consistency by the fsck(1M)
program. The devices normally correspond to those mounted when the system is in multiuser mode.

For example, a sample checklist would be:

/dev/rp0
/dev/trp1

Page 20

ae

Note that the root device is specified as a block device while all others are specified as character
devices. Character devices can be checked faster than block devices. The root device is specified as
a block device in order for the fsck program to detect when the root is being checked, so that any

modifications to this file system will result in an immediate reboot request.

J. /etc/shutdown

This file contains procedures to gracefully shut down the system in preparation for file save or

scheduled downtime. Beware that no procedures appear after the transition to single user mode as it
may not be completed before the transition occurs.

K. /etc/filesave and /etc/tapesave

These files contain prototypes for local file saves.

L. /usr/adm/pacct

This file contains the process accounting information; see acct(1M).

M. /usr/lib/acct/holidays

This file defines the local company holiday schedule and designates the start of prime and non-

prime processing hours for the accounting system.

N. /ete/wtmp

This file is the log of login processes.

REGENERATING SYSTEM SOFTWARE

System source is issued under the directory /usr/src. The subdirectories are named cmd
(commands), /ib (libraries), uts (the operating system), head (header files), and stand (stand-alone
programs); see mk(8) for details on how to remake system software.

Page 21

NOTES

Page 22

